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Estimators of Repeatability* 

H. Mansour, E.V. Nordheim and J.J. Rutledge 
University of Wisconsin, Madison, Wis. (USA) 

Summary. Analysis of  variance and principal compo- 
nents methods have been suggested for estimating repeat- 
ability. In this study, six estimation procedures are com- 
pared: ANOVA, principal components based on the sample 
covariance matrix and also on the sample correlation ma- 
trix, a related multivariate method (structural analysis) 
based on the sample covariance matrix and also on the 
sample correlation matrix, and maximum likelihood esti- 
mation. A simulation study indicates that when the stan- 
dard linear model assumptions are met, the estimators are 
quite similar except when the repeatability is small. Over- 
all, maximum likelihood appears the preferred method. 
If  the assumption of equal variance is relaxed, the me- 
thods based on the sample correlation matrix perform bet- 
ter although others are surprisingly robust. The structural 
analysis method (with sample correlation matrix)appears 
to be best. 
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Introduction 

Repeatability is a measure of 'the extent to which differ- 
ences between individuals depend on genetic and perma- 
nent environmental effects, rather than on those which are 
temporary' (Turner and Young 1969). Analysis of variance 
methods have traditionally been used to estimate repeat- 
ability. More recently, multivariate methods using princi- 
pal components have been suggested (Abeywardena 1972; 
Rutledge 1974). Our first objective is to compare the 
ANOVA and principle components methods along with 
some others. This will include a brief discussion of proper- 
ties and some simulations. 

* Paper number 776 from the Department of Meat and Animal 
Science, University of Wisconsin-Madison. 

In traditional estimation of repeatability, the standard 
linear model assumption of independent errors having 
common variance is made. As a second objective, we 
briefly explore the performance of the various estimation 
procedures for the case when the assumption of variance 
homogeneity is relaxed. Application to an example of 
mouse litter size data will be made. 

Estimators of Repeatability 

A standard linear model often used to describe the produc- 
tion or yield of an animal or plant is: 

Y i j = / t + a i + r j + e i j  i = l  ...n; j = l  . . .k (1) 

where Yij is the production or yield, # is an overall (fix- 
ed) mean, a i is a random effect for individual, rj is a fixed 
time effect and eij is a random error. The usual assump- 
tions made are: 

k 
ai 'x' N(0'  ~ eij % Y(0'  ~ j~l "fj=0 

with all a i and eij terms independent. We shall consider 
only cases where each individual has a record in each time 
period (balanced data). In some applications the r i term is 
suppressed from (1), but we shall not further consider 
this case. A standard analysis of  this balanced mixed 
model leads to the ANOVA table: (see following page) 

By equating the mean square of each source to its expec- 
2 tation, estimates of o~ and o a can be obtained. The esti- 

mators are: 

- 2 = MSE, O 2 = (MSA - MSE)/k or e 

where MSA and MSE are the mean squares for individual 
and error respectively. The corresponding estimator of 
repeatability (p) is: 
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Degrees o f  Expected 
Source f reedom Mean square mean  square 

n 

Individual n - 1 k Y, (V/i - Y )2/(n - 1) o~ + ke  a 
i = l  " "" 

k k 
1"1 1 

Time k - 1  n ~ (~/j-~/..)2/(k-l) ~r e 2 + ~  ~ rj 
j= l  " " " j  1 

n k 

E r r o r  (n - 1 ) ( k  - 1) i=l]~ j --1 ]~ (Y-ii - Y i .  - Y . j  + Y , . ) 2 / ( n  - 1 ) ( k  - 1) %2 

PAO" = oa/%2 . 2  + 0 2 )  = ( M S A  - MSE)/[MSA + (k -  1)MSE] 
(2) 

(The 
deleted from (1) is the intraclass correlation). 

Model (1) can be formulated multivariately: 

ANOVA estimator obtained when the rj term is 

I ' Ot  

L~k__ 

p 1 . . .  

o- 

P 

�9 (3) 

p p. �9149 1 

,~Yi = 

( V i i '  Y i 2 ,  �9  Y i k ) '  % Nk  

2 2 2 2 2 and p = e a 1(0 a + 0 2) .  The where/a i =/a + rj, O t = O a + O e 

correlation p is the repeatability and e t is the phenotypic 
variance�9 

The component  structure of  the covariance matrix in 
(3) is discussed in Morrison (1976). The largest charac- 
teristic root is: 

Xv= ty t [1 + ( k - 1 ) p ]  (4) 

with corresponding vec to rb  

b'= (1/x/k-, .... l/x, '~-). (5) 

From (4) it follows that an estimator for p is: 

PPv = [ ~ / O t  - 1 ] / [ k - l ]  (6) 

where Xv is the largest characteristic root from the sample 
^ 2 is an estimator of  the pheno- covariance matrix, S, and e t 

typic variance. Herein S denotes the usual unbiased sam- 
ple covariance matrix. From (3), a natural estimator of  

2 is the mean of  the diagonal terms from S. (l t 
If  principal components are extracted from the corre- 

lation matrix corresponding to (3), the largest characteris- 
2 replaced by 1 and the tic root is the same as in (4) with a t 

characteristic vector is as in (5). A reasonable estimator 
(Rutledge 1974) in this case is: 

PPR = [~tr --  l l / [ k - l ]  (7) 

where ~ is the largest characteristic root from the sample 
correlation matrix, R. 

A multivariate procedure related to principal compo- 
nents recalls the basic definition of  principal components.  
With V as the "theoretical' covariance matrix, the first 
principal component  is the vector a that maximizes a--Va 
subject to the constraint that a--a = 1. It follows that ~ = 
max a ' V a .  Since the structure in (3) leads to first prin- 
cipal component  b from (5), another possible estimator 
of  p is: 

Psv  = [b'S~b/Ot - 1 ] / [ k - l ]  (8) 

This procedure can also be applied to the correlation 
matrix. The resulting estimator is: 

,OSR = [ b ' R b b -  1 ] / [ k - l l  (9) 

To distinguish the estimators (8) and (9), they will be re- 
ferred to as having come from a structural analysis�9 

A final estimator we consider here is the maximum 
likelihood estimator with %2 constrained to be non-nega- 
tive. Following Searle (1971), this estimator is: 

,OML = max {(MSA - MSE)/[MSA + ( k -  1) MSE], O} 

= max {,bAo, O} (10) 

We note that the close relationship between /3ML and 
PAO does not hold exactly if the r i term is deleted from 
(1). (See Appendix for brief discussion). 

A tabulation of  estimators for easy reference is given 
as Table 1. 
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Table 1. List of estimators 

PAO 

PPV 

t3pR 

~sv 

PSR 

PML 

ANOVA estimator 

Estimator based on principal components extracted 
from sample covariance matrix 

Estimator based on principal components extracted 
from sample correlation matrix 

Structural estimator from sample covariance matrix 
using (theoretical) vector corresponding to largest char- 
acteristic root (this estimator is identical to t~AO) 

Structural estimator from sample correlation matrix 
using (theoretical) characteristic vector corresponding 
to largest characteristic root 

Maximum likelihood estimator with aa2 constrained to 
be non-negative 

Interpretation and Comparison of Estimators 

The ANOVA estimator, PAo can take on negative values. 
This occurs if and only if 6a 2 is negative. In a sense the 
MLE tSM2L can be viewed as the ANOVA estimator that re- 
places O a by 0 if 6a 2 is negative. The structural estimators 
Psv and ~3SR can also be negative, whereas the principal 
components estimators ~3pv and PPR are constrained to 

2 and k r > 1 by definition. The be positive since ~v ~ ~ -- , 
drawback to the non-negativity of/Spv, tSVR and/SML is 
the occurrence of a non-negligible bias when (true) P is 
small. We note that tSAO and 15SR have small though neg- 
ligible bias. 

Formal statistical properties of the estimators are dif- 
ficult to derive. Some progress is possible when k = 2, but 
this will not be pursued here. An estimate of the asymp- 
totic standard error (ASE) for PAO is well known and is 
given, for example, in Turner and Young (1969). 

ObA o = (1 -,b) [1 + ( k -  1).b]/[1/2 k ( k - l )  ( n -  1)] l/:  . 

(11) 

Anderson (1951) has demonstrated a result from which 
it follows that %PR has ASE given by (11) when P > 0. 

It can be shown by straightforward algebra that PAO 
is equal to the average covariance divided by the average 
variance from S (Winer 1971). It is also easy to show 
that tSsv is equal to the same quantity. Thus, 

1 z z sjj, sjj ( 12 )  
PAO=PsV = " k ( k ~ j )  j=l j'=l j 

j:/:j' 

where sji, is the element in thej th row andj 'th column of 
S. Similarly, 15SR is equal to the average pairwise correla- 
tion 

1 k k 

PSR- k(k-l) j=~ j'~, rjj, (13) 
j#=j' 

where rjj, is the dement in the jth row and j ,th column of 
R. (We demonstrate this result in the Appendix). Thus, 
PAO (PSV) and PSR have pleasing interpretations. The esti- 
mator OML relates to tSAo as mentioned earlier. The prin- 
cipal components estimators have no obvious interpreta- 
tions. 

In order to compare our five distinct estimators, we 
conducted a simulation study. Using a multivariate normal 
generator, we generated observations according to (3). We 
considered 5 values for O: 0.00, 0.10, 0.25, 0.50, 0.75; 3 
values for k (number of records): 2, 4, 6; and 2 values for 
n (number of individuals): 50, 200. These values were 
selected primarily to reflect situations of possible interest 
to animal scientists. For each combination of P, k and n, 
we conducted 100 simulation runs, computing the repeat- 
ability for each run using each estimator. 

Our basic results are presented in Figs. 1 and 2. Here we 
display the Monte-Carlo biases and variances for P = 0 and 
0.5 for all values of k and n considered. Monte-Carlo bias 
is defined as the difference between the computed mean 
of I00 estimates and p. To interpret the results, recall the 
discussion at the beginning of this section on the algebraic 
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Fig. 1. Monte-Ca.rlo biases (homogeneous variance). P~o (p) is 
the true value of repeatability, and N is the number of individuals 
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Fig. 2. Monte-Carlo variances (homogeneous variance). Rho Co) 
is the true value of repeatability, and N is the number of individuals 

sign of the estimators. Thus, one expects differing behavior 
of the estimators when p is small. The figures confirm this 
evaluation and also demonstrate performance similarities 
for larger p. The plotted results for p = 0.5 are typical of 
the large p situation, e.g., comparable Monte-Carlo biases 
and variances. For p = 0, we note firstly that ~bAO~SV) 
and PSR have negligible bias, PML has modest bias, and 
PPv and PPR have larger biases�9 Secondly, the variances 
for t3Ao(~sv ) and I}SR are the largest with the variances 
for jbpv , ~beR and S3ML roughly comparable. (We note 
that the variances for PAO with p = 0 and p = 0.5 and the 
variances for all other estimators, including ~bpR , with 
p = 0.5 show close agreement with (11).) 

A common method to evaluate estimators is that of 
mean squared error (MQE) (Bickel and Doksum 1977)�9 
This measure is given by the sum of bias squared and 
variance. For p = 0.5 the MQE computed from the Monte- 
Carlo values is similar for all estimators; however, at 
p = 0, PML has consistently the lowest MQE with the 
others following the general (increasing)order PAO(~SV) 
and PSR, JbeR and PPv" For p = 0.10, (results not shown) 
PPR and PML have comparable MQE with the other esti- 
mators having slightly higher values. 

In general, except for very small p, there is rather little 
difference among estimators. Perhaps Ppv is the least 
desirable since its behavior is the least consistent�9 Con- 
sidering the small p case, we conclude that PML seems to 
perform the best, and we would recommend its use. 

Robustness When Variances are Unequal 

In certain circumstances the assumption of homogeneous 
variances may not be appropriate; yet the notion of re- 
peatability seems reasonable�9 In this case the model can 
be expressed as (3) with covariance matrix replaced by: 

D 

2 
(711 P(711 (722 

2 
(722 

�9 �9 �9 I ) 0 1 1  (Tkk 

�9 �9 �9 / 0022  (7kk  

2 
(Tkk 

(14) 

where o~ is the phenotypic variance of the jth record and 
p is the repeatability. For situations in which the o~ are 
unequal, we would expect the estimators based on the 
sample correlation matrix, I)pR and t)SR, to perform bet- 
ter than the others�9 

A simulation study was carried out with k = 4, n = 
200, p = 0, 0.1, 0.25, 0.5 and 0.75 and two sets of vari- 
ances as shown below�9 

2 2 2 2 
O11 (722 (733 (744 

6 7 8 9 

6 9 12 15 

The results using the second set of variances are shown in 

Figs. 3 and 4 for estimators PAo(Psv), ~brR, I)SR and PML" 
For small correlations we note the same behavior as in the 
standard case. However, for larger correlations, the estima- 
tors not based directly on the sample correlation matrix 
show a negative Monte-Carlo bias. What appears surprising 
is the relatively small magnitude of this bias. By calcu- 
lating the ratio of average (true) covariance to average (true) 
variance for (14) with k = 4 and the second set of vari- 
ances, we note PAO = 0.964 p (this is demonstrated in the 
Appendix). Thus, ~AOChSV) and ~bML appear to be quite 
robust to variance heterogeneity. Taking into account the 
difficulties with ~bpR for small p, we feel that PSR would 
be a recommended estimator. 

As an example of data having such structure, we ob- 
tained the litter sizes of 150 randomly-mated ICR mice 
over their first four parities. (As the litter sizes are typically 



H. Mansour et al.: Estimators of Repeatability 155 

(3: 

O0 

.o5~ 

.04~ 

.03- 

.02- 

.01- 

.oo- 
-.ol- 
-.0z- 

.oa- 
o.oo o.25 o.?s 

0.10 0.50 
RHO 

Fig. 3. Monte-Carlo biases (4 records, unequal variances: 6, 9, 12 
and 15). Rho Co) is the true value of repeatability, N = 200 
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Fig. 4. Monte-Carlo variances (4 records, unequal variances: 6, 
9, 12 and 15). Rho (0) is the true value of repeatability, N = 200 

around 10, we ignore any difficulties due to discrete ef- 
fects). As shown below, the sample covariance matrix cal- 
culated from these data indicates that an assumption of 
constant variances does not appear plausible, whereas 
the sample correlation matrix shows that there is a fairly 
consistent repeatability: 

3.50 1.40 

S= 
5.22 

1.14 1.27- 

1.38 1.73 

7.45 1.71 

8.50 

R= 

m 

1 0.33 0.22 

1 0.22 

1 

0.23- 

0.26 

0.22 

1 

For this case, PAO~SV) = / ) M L  = 0.233,/~PV = 0.248 and 
PSR = 0.247. 

Discussion 

In the previous sections we considered several estimators 
of repeatability and compared their performance in a 
variety of situations including some in which the assump- 
tion of homogeneous variances was violated. In general, 
we found that the estimators behaved similarly although 
there is, perhaps, a slight preference for PML when the 
variances are close to homogeneous and for PSR when the 
variances are inhomogeneous. 

Some additional issues warrant mentioning. Firstly, 
one wishes to know how well these estimators perform 
when other standard assumptions are violated and if there 
may be other and better estimators in these cases. This 
point can only be answered with further work. Secondly, 
it is important to determine from the data which of the 
assumptions may be violated. For instance, Wilks (1946) 
has generalized a likelihood ratio statistic to test for the 
null hypothesis that the covariance structure is that in (3). 
However, this procedure appears quite nonrobust to de- 
partures from normality and consequently may be of  limit- 
ed usefulness. Thirdly, analysis of unbalanced data is diffi- 
cult in practice. Although maximum liklihood estimation 
is in principle straightforward, though tedious, there is no 
completely satisfactory ANOVA procedure. For methods 
involving sample covariance and correlation matrices, we 
observe that there is no universally accepted way to define 
these matrices. Further developments in multivariate 
analysis and variance components estimation will be neces- 
sary in order to develop a satisfactory methodology. We 
intend to report on our future progress. 
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Appendix 

1 Relationship Between PML and PAO when r i Term is 
Deleted from (1) 

From Searle (1971), the form of the ANOVA estimator 
obtained when the rj term is deleted from (1) is identical 
to (2). However,the MLE is max {[ (n-  1)MSA/n - MSE]/ 
[(n-1)MSA/n + (k-1)MSE],  0}. For small n the close 
relationship between estimators noted below (10) does not 
hold; however, as (n -1 ) /n  approaches 1, the close rela- 
tionship is approximately valid. 
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2 Demonstration o f  Eq. (13) 

k k 

From(9)tSsn= [1/k ~ Z r j j , - 1 ] / [ k - 1 ]  
j=l j '=l  

k k k 
= [ 1 / k ( j ~ l  r j j +  ~ Y. r j j , ) - l ] / [ k - 1 ]  

j=l j '= l  
j=~j' 

1 k k 
- ~ 

k ( k - 1 )  j=l j'=l rjj,. 
j~ j '  

3 Demonstration that 0.40 = 0.964 P from (14) when 
2 2 2 = 12 and o 2  = 15 oll = 6 ,  022 = 9 ,  033 
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From (14) with k = 4, PAO (= PSV) = 

4 4 I 4 
1 E E POiiOjj/ ~ Oii2 
6 i=1 j=2 4 i=l 
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